Mechanism of growth inhibition by tungsten in Acidithiobacillus ferrooxidans.

نویسندگان

  • T Sugio
  • H Kuwano
  • A Negishi
  • T Maeda
  • F Takeuchi
  • K Kamimura
چکیده

Cell growth of three hundred iron-oxidizing bacteria isolated from natural environments was inhibited strongly by 0.05 mM, and completely by 0.2 mM of sodium tungstate (Na2WO4), respectively. Since no great difference in the level of tungsten inhibition was observed among the 300 strains tested, the mechanism of inhibition by Na2WO4 was studied with Acidithiobacillus ferrooxidans strain AP19-3. When resting cells of AP19-3 were incubated in 0.1 M beta-alanine-SO4(2-) buffer (pH 3.0) with 0.1 mM Na2WO4 for 1 h, the amount of tungsten bound to the cells was 12 microg/mg protein. The optimum pH for tungsten binding to the resting cells was 2 to approximately 3. Approximately 2 times more tungsten bound to the cells at pH 3.0 than at pH 6.0. The tungsten binding was specifically inhibited by sodium molybdenum. However, copper, nickel, cadmium, zinc, manganese, cobalt, and vanadate did not disturb tungsten binding to the resting cells. The iron-oxidizing activity of AP19-3 was inhibited 24, 62, and 77% by 1, 5, and 10 mM of Na2WO4, respectively. Among the components of iron oxidation enzyme system, iron:cytochrome c oxidoreductase activity was not inhibited by 10 mM of Na2WO4. In contrast, the activity of cytochrome c oxidase purified highly from the strain was inhibited 50 and 72%, respectively, by 0.05 and 0.1 mM of Na2WO4. The amounts of tungsten bound to plasma membrane, cytosol fraction, and a purified cytochrome c oxidase were 8, 0.5, and 191 microg/mg protein, respectively. From the results, the growth inhibition by Na2WO4 observed in A. ferrooxidans is explained as follows: tungsten binds to cytochrome c oxidase in plasma membranes and inhibits cytochrome c oxidase activity, and as a results, the generation of energy needed for cell growth from the oxidation of Fe2+ is stopped.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A study of Acidithiobacillus ferrooxidans DSMZ 583 Adaptation to Heavy Metals

In this study the ability of Acidithiobacillus ferrooxidans, with regard to the biorecovery of heavy metals inshake flask has been investigated. Adaptation experiments with the single metal ions Ni, Co, V, Mo, W anda mixture of the first four metal ions in the medium was developed through serial sub-culturing. Adaptationshowed that A. ferrooxidans could tolerate up to 2.3 g/l ...

متن کامل

XRF analysis of coal bioleaching by chemolithoheterotrophic Alicyclobacillus HRM5 and chemolithoautotrophic Acidithiobacillus ferrooxidans

Most studies on sulfur bioleaching from coal depend on an autotrophic microorganism with a low growth and a long leaching time. For this reason, heterotrophic heat and acidic pH-resistant Alicyclobacillus was used as the growing and resting cells for the sulfur and iron removal from coal. The results obtained were analyzed by XRF. The data showed that 26.71% of sulfur was removed by Alicyclobac...

متن کامل

Bioleaching and Kinetic Investigation of WPCBs by A. Ferrooxidans, A. Thiooxidans and their Mixtures

Bioleaching was used to mobilize Cu, Zn and Ni from waste printed circuit boards (WPCBs) and eliminate hazardous metal species from these wastes. Pulp density (PD) and medium culture are two effective factors which have been optimized in this paper. The bacteria Acidithiobacillus ferrooxidans (A. ferrooxidans) and Acidithiobacillus thiooxidans (A. thiooxidans) and their mixture were grown and a...

متن کامل

An Investigation the Effect of Acidithiobacillus Ferrooxidans Bacteria on Biomachining of Titanium Alloy and Copper

Recent advances in technology have increased the necessity of using components with Micro and Nano dimensions. In recent years, the use of bacteria as a renewable tool has hopeful applications in producing different work-pieces. In this study, the effect of Acidithiobacillus Ferrooxidans (A.F) on Vt20 (Titanium alloy) and Cu were investigated. The results illustrated that in the medium of the A...

متن کامل

Use of Walnut Shell Powder to Inhibit Expression of Fe2+-Oxidizing Genes of Acidithiobacillus Ferrooxidans

Acidithiobacillus ferrooxidans is a Gram-negative bacterium that obtains energy by oxidizing Fe(2+) or reduced sulfur compounds. This bacterium contributes to the formation of acid mine drainage (AMD). This study determined whether walnut shell powder inhibits the growth of A. ferrooxidans. First, the effects of walnut shell powder on Fe(2+) oxidization and H⁺ production were evaluated. Second,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioscience, biotechnology, and biochemistry

دوره 65 3  شماره 

صفحات  -

تاریخ انتشار 2001